
Improving AODV Routing Protocol For Mobile Ad-Hoc
Networks Using Swarm-Based Algorithms

Clodomir J. Santana Jr.1 and E inst1

1 University of Pernambuco, Recife-PE, Brazil
Email: cjsj@ecomp.poli.br, emilly.alves@poli.br, emnf@ecomp.poli.br, mgmm@ecomp.poli.br,

pjbls@ecomp.poli.br, carmelofilho@ieee.org
2 Federal University of Technology - Parana, Ponta Grossa-PR, Brazil

Email: hugosiqueira@utfpr.edu.br
3 Illinois State University, Normal-IL, USA

Email: aagokhale@ilstu.edu

Abstract. This paper investigates the application of bio-inspired Swarm-based
algorithms - Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC)
- to improve the capability of the Ad Hoc On-Demand Distance Vector (AODV)
routing protocol to recover broken connections that occur due to the mobility of
nodes in Mobile ad-hoc networks (MANETs). We use the algorithms as men-
tioned earlier to calculate the weight of a function based on the number of hops
traveled by the package, the number of hops to reach the destiny, source node
connectivity and the predecessor node connectivity. We compare the obtained re-
sults with the standard version of the AODV. The results show that the proposed
approach with both ABC and PSO algorithms are capable of achieving better re-
sults than the conventional AODV protocol concerning routing overhead, delay,
and packet delivery ratio.

Keywords: MANETs, Swarm Algorithms, AODV

1 Introduction

Ad hoc networks are communication systems in which there is no infrastructure in
the environment to distribute the tasks or to realize the communications between the
distributed nodes of the network. In this case, the coordination of the communication is
decentralized and distributed among the nodes [15] [20].

Nowadays, we observe the improvement of the devices which communicate via
wireless technology. It increases the portability and flexibility of this kind of platform,
allowing the development of many types of equipment, such as mobile sensors [16].
Mobile ad-hoc networks (MANETs) were developed to implement the two former
ideas. The possible applications are several: ambient monitoring, security monitoring,
military proposes, among others [4].

The main characteristic of these networks is the information is transmitted through
multiple hops between a source node - from where it comes up - to the destination node.
However, if the nodes are allowed to move, their spatial location may change dynami-
cally and arbitrarily. In this case, the routes previously defined can be interrupted, which



creates the necessity to repair the communication from the source to destiny nodes. To
solve this task, some protocols have been proposed [19] [2]. The protocols are divided
in three main categories [5] [1] [16]:

i) proactive: these protocols regularly evaluate the routes sending control packages
to the nodes. In this case, the routes are currently known and available. This character-
istic avoid communication breakdown but implicates in an additional overhead to the
network and elevate energy expenditure;

ii) reactive: this kind of protocol creates routes just when the source node needs
to communicates to other. After the end of the process, a route is established, and the
protocol starts its maintenance procedure. Since these nodes do not send control pack-
ages, they spend less energy than the table-driven ones and do not increase the com-
munication capability of the network. However, the latency to send messages increases,
occasioning delays;

iii) hybrid: this kind of protocols was developed using the main characteristics of
those as mentioned earlier, being adequate to ad hoc networks whose behavior changes
regularly. The nodes define a service area called zone according to their transmission
power rating. Then, the nodes work as a table-driven inside their zone (intra-zone), and
if a route request is not found, the protocol initiates a discovery process out of the zone
(inter-zone) on-demand.

Indeed, during the maintenance of the routes, the protocols have to perceive the
failure and to decide which is the best recovery mechanism to be used to restore the
routes [15]. In this sense, one of the most popular algorithms is the Ad Hoc On-Demand
Distance Vector (AODV) algorithm [19], which utilizes the connectivity concept to de-
cide where is better to proceed repair when a link break occurs, i.e., on the source node
or in the predecessor node regarding the failure. It is an on-demand method, which
means that a new route is discovered when a source node needs to send data to a desti-
nation node [4].

In 2012, Pereira et al. [16] used the particle swarm optimization (PSO) approach
[12] to determine the coefficients of a new cost function elaborated based on four el-
ements of the network: packet Forward, source Connectivity, predecessor Hop Count
and predecessor Connectivity. This approach was named AODV-PSO.

In addition, we consider (PSO) [12] [14], to generate the appropriate composition of
weights for all considered parameters in AODV route recovery, to improve the choice
in local repair decision aiming to reduce data packet delivery delay [6].

This paper proposes extending the work from Pereira et al. [16]. We evaluate the
performance of the PSO and the Artificial Bee Colony (ABC) [10] [11] [8], aiming to
optimize the four coefficients of their proposal. We compare the results to the standard
AODV.

The remainder of the article is organized as follow: Section II presents the AODV
routing protocol and those proposed in [16]; Section III discusses the optimization
methods - PSO and ABC; Section IV shows the computational results obtained through
simulations. In Section V, we present the conclusions.



2 Ad Hoc On-Demand Distance Vector (AODV)

Ad Hoc On-Demand Distance Vector (AODV) is an on-demand algorithm which the
primary goal is to self-adapt quickly and dynamically to the variations of the conditions
of the links of the networks. It is an important issue since these communication links
can break due to a change in the position of the nodes [3] [7].

New routes must be discovered when source nodes need to communicate with des-
tination nodes using route request messages (RREQs). The source spreads RREQs and
waits for a predetermined time to receive a route reply (RREP) confirming the route.
At the moment the node receives a RREQ, it creates or updates the input in the routing
table of the predecessor node. If this node does not present a valid sequence number,
this indicates that the route is not available. Next, the node checks if it already received
a requisition containing the same broadcast identifier and the corresponding address
of the source. If this happens, the RREQ message is discarded because it was already
spread to its neighbors. In case the node receives a new requisition but it is not the desti-
nation and do not have a valid route to the destination, the hop counter contained in the
RREQ is incremented, and the route requisition is forwarded to its neighbors [16] [15].

While the requisition is transmitted in the network, many backward routes between
the source and the intermediary nodes are stored. Thus, having the possibility to reach
the destiny, the network has the information how the answer it has to return to the
source. To make it possible, every intermediary node which propagates a RREQ store
the address of the neighbor which received the first RREQ in an input or table. In this
table, we stored the sequence number of the source and the expiration time of the back-
ward route. An intermediary node also can respond to a route requisition if it has in its
routing table one active input to the destiny presetting sequence number higher or equal
to the last known by the source. Before sending the RREP, the destination node updates
its sequence number to the maximum between its current value and the value that was
in the RREQ [4].

In the AODV algorithm, there are two mechanisms of recovery: from the source and
locally. The recovery is needed when occurs a break in a link which was being used.
When a link break is detected, this information is communicated to the other nodes
which use this link in some active route by a route error message (RERR) or a local
repair is done [17] [18] [5].

In the source repair mechanism, the error message sent by the predecessor node to
break (RERR) have to be disseminated throughout the network to reach all the nodes
which use the broken link. Then, each node which receives the RERR decides if it
continues or not to pass the message. Besides, it has to update its routing table, recording
if the specified destination in the message is unreached and then refresh the sequence
number of the nodes [5].

In the local repair mechanism, when a link break occurs in an active route, the
predecessor node to break increase the sequence number and spread the RREQ aiming
to find the destination node. The local repair attempt is imperceptible to the source
node, and it continues sending the data packages which are stored in the predecessor
node regarding the failure until the desired destination node are found. If we exceed
the time limit to find a new route, we transmit a RERR message, and the packages are
discarded. While the data stored predecessor node to break do not exceed this limit,



they can be delivered if a new route is found. When it happens, delays and package
losses may occur. But, if the repairing node receives a RREP, it ensures lower overhead
and delays [15].

2.1 Route recovery using the connectivity concept

The most known approach implemented in the AODV uses both source and local repair.
The decision regarding the method to be used depends on the number of hops involved
on the path to the destination. However, the number of neighbors of the source and
predecessor nodes to repair the failure can indicate the possibility of finding another
good route.

Pereira et al. [16] utilize this assumption to propose a new decision function to route
recovery using the connectivity concept to improve the performance of the AODV al-
gorithm. Firstly, they define the connectivity concept as the number of neighbors in the
transmission range of the node. Every time a node sends a RREQ, it includes its con-
nectivity in the packet so that every node that receives the request, stores or updates the
source node connectivity information before forwarding or replying the RREQ. When
the link between nodes breaks, then we update the node connectivity. When a node
sends a packet using a route, it sends information regarding the connectivity as well.
Therefore, every node in this route can update the source node connectivity information.
In this case, the authors mention the necessity to get the connectivity of the predecessor
and source nodes to elaborate the decision function. This function associates weights to
the number of hops on the path to the destination and with the connectivity.

In algorithm 1 we present the steps to perform it. The variables source and local are
functions of the number of hops on the path to the destination and their connectivities.
The coefficients, A,B,C and D are real numbers defined in the interval [-1;+1] and
weighted the influence on the choice between one and other repair action [16].

Algorithm 1 Route recovery using the connectivity concept
1: source = (A × packet Forward) + (B × sourceConnectivity)
2: local = (C × predecessorHopCount) + (D × predecessorConnectivity)
3: if (source <= local) then
4: Local Repair;
5: else
6: Source Repair;
7: end if

The last step of the algorithm is to define suitable values to the weights A,B,C
and D. In the original work from Pereira et al. [16], they used the Particle Swarm
Optimization (PSO), a bio-inspired swarm-based methodology for optimization. In the
next Section, we present the PSO and the Artificial Bee Colony Algorithm (ABC) to
solve this task.



3 Swarm-Based Algorithms for Optimization

3.1 Particle Swarm Optimization

In 1995, Kennedy and Eberhart [12] developed one of the most known representatives of
the bio-inspired swarm-based algorithms: the Particle swarm optimization (PSO). The
technique was developed to tackle optimization problems with continuous variables.
The socio interactions observed in animals swarms, such as birds flocks and fish schools
were the biological inspiration for these algorithms.

In the PSO algorithm, a particle represents a candidate solution which changes its
position moving in the search space according to their individual experience and the
experience of the others members of the group. This idea allows a complex emergent
global performance from simple individual behavior [14].

We highlight the primary step in the development and application of the PSO is to
define a fitness function as the performance index. In the case of optimization problems,
it is necessary to investigate which is the best proposition to perform search processes
better [12].

Considering a swarm of particles (swarm) with size P. Each particle i is in the D-
dimension space presents current position xp = (xp,1, xp,2, ..., xp,D) and velocity vp =
(vp,1, vp,2, ..., vp,D). In this section the specification of the dimensions are omitted to
simplify the equations. The movement of a particle p occurs according Equation 1.

xt+1
p = xt

p + vt+1
p (1)

The velocity is updated according to Equation 2.

vt+1
p = ωvt

p + c1rand1 ⊗ (pbesttp − xp
t )+

c2rand2 ⊗ (gbesttp − xt
p)

(2)

where t denotes the current iteration of particle p = 1, ..., P , ω is the inertia weight,
rand1 and rand2 are random vector in which the dimensions are generated uniformly
in the interval [0,1], c1 and c2 are the cognitive and social rates respectively; pbesttp
is the best position found by the current particle p until time t (the best individual
experience or the position that led to the best performance index) and gbesttp is the
best position found by a predefined neighbors.

The initialization of the particles positions is done randomly and follow a uniform
distribution. The same process is applied to generate the initial velocities, but it is pos-
sible to initiate them as zero. The velocity must be in a range [−vmax,+vmax]. The
inertia weight ω is used to controlling the particles’ explosion [14].

Each particle’s position xp is codified as a set of possible values to the weights
A,B,C and D in its structure, as showed in Equation 3.

xp = (Ap, Bp, Cp, Dp) (3)

Therefore, the particles are composed of four vectors.



As mentioned previously, it is necessary to define an evaluation criterion to perform
gbest and pbest. For each simulated scenario, the fitness function is the average data
packet delivery delay for each network, which has to be minimized.

Algorithm 2 shows the steps to implement the PSO algorithm [12].

Algorithm 2 PSO Pseudocode.
1: Initialize all particle’s position xp with a uniformly distributed random vector (rand[0, 1])
2: Initialize the particle’s best known position to its initial position
3: Set ω, φ1 and φ2

4: Be f(xp) the fitness function of the particle p;
5: if f(xp) < gbest then
6: update pbest the swarm’s best known position: gbest = xp;
7: end if
8: Initialize the particle’s velocity;
9: while a termination criterion is not met do

10: for each particle p = 1, ..., N do
11: Generate the numbers rand1 and rand2 with a uniformly distributed random vector

(rand[0, 1])
12: Update the particle’s velocity using Equation 2
13: Update the particle’s position by Equation 1
14: Update particle’s fitness f(xp)
15: if f(xp) < pbest then
16: Update the particle’s best known position: pbest = xp

17: end if
18: if f(xp) < gbest then
19: Update the swarm’s best known position: gbest = xp

20: end if
21: end for
22: end while

3.2 Artificial Bee Colony

In 2005, Karaboga introduced the Artificial Bee Colony algorithm (ABC) [10], which
was developed for optimization of continuous problems. The biological inspiration is
based on the foraging process of honey bees. The ABC has an essential difference to the
majority of the swarm-based algorithms: the candidate solutions are the food sources
instead of the agents (bees) [11].

Here, a swarm or a hive is a set of artificial bees which aim to found the best food
sources. This is a metaphor to the optimum points of an objective function. In this sense,
the quality of the source is measured by as nectar amount, directly related to the fitness
associated with each source.

According to Karaboga [11]. The swarm divides the bees into three groups: em-
ployed, onlookers and scouts. There are SN employed bees, and each one explores
each food source (xi, i = 1, ..., SN ). During the iterative process, used go to their re-
spective food source, come back to the hive and perform a dance. Onlooker bees wait



for the employed in the dance area to decide which source they will explore depending
on the dance.

Onlooker and employed bees choose food sources depending on the experience of
themselves and their nest mates. On the other hand, scout bees perform random searches
movements aiming to discover new unknown food sources.

Sometimes, a food source is abandoned if their nectar quantity became low. In this
case, the respectively employed bee becomes a scout and starts to search for finding a
new one.

ABC algorithm combines local search methods, developed by employed and on-
looker bees, with global search potential, performed by onlookers and scouts, giving to
the algorithm exploration and exploitation capability.

The algorithm is initialized generating a group of SN food sources randomly within
the range of the boundaries of the variables. Equation 4 presents this procedure (we
highlight the dimensions).

xi,d = xdmin + rand(0, 1)(xdmax − xdmin) (4)

where i = 1, .., SN is the number of food sources, d = 1, ..., D are the dimension
of the problem (the number of parameters to be optimized), rand(0, 1) is a random
number generated according to a uniform distribution in the interval [0;1], (xdmax

and
xdmin) are the lower and upper bounds of the d-th parameter (dimension).

Then, each employed bee has to go to its food source and finds a new one in its
neighborhood, as shown in Equation 5.

vi,d = xi,d + rand(−1, 1).(xi,d − xj,d) (5)

being j, j 6= i a randomly selected food source and d = 1, ..., D a random selected
dimension (parameter), rand(−1, 1) a random number generated following to a uni-
form distribution in the interval [-1;1]. One can observe that the new food source v is
found changing just one dimension of x. This operation works as a local search.

After v is determined, then a greedy selection is applied to v, and x and those with
better fitness value are the assumed to be the current source.

Next, the onlooker bees are updated. They receive information about the quality of
the food sources shared by the employed bees and choose one of them to explore. The
probability of selecting a source is proportional to its fitness (amount of nectar). This
probability is calculated using Equation 6.

pi =
fiti

SN∑
j=1

fitj

(6)

For each food source i = 1, ..., SN , the onlooker draw a number r = rand(0, 1).
For each r < pi the onlooker bee explores the corresponding source xi. Then, it calcu-
lates of a new source by 5 and performs the greedy selection.

The last stage of the ABC is the scout bee’s phase. It just occurs if some food source
is exhausted. This means that some employed bee exceeds the maximum number of tries



(limit) to improve the fitness of a source. In this case, a new food source is generated
using 4 and limit is set as zero.

After the complete cycle, the best solution is always stored.
The Algorithm 3 shows all the steps to follow [11].

Algorithm 3 ABC Pseudocode.
1: Initialize randomly all food sources positions x0

i , according to the same scheme of Equation
1;

2: Evaluate the nectar amount (fitness) of them;
3: Send the employed bees to food sources;
4: while stop criterion is not reached do
5: -Employed Bees Phase
6: for each employed bee i = 1, ..., SN do
7: Find a new food source in its neighborhood using Equation 5;
8: Evaluate the nectar amount (fitness) of the new food source;
9: Compare the fitness of the original food source and the new one and choose those

which presents the best fitness (greedy selection);
10: end for
11: Calculate the probability pi for each food source utilizing Equation 6;
12: -Onlooker Bees Phase
13: for each onlooker bee do
14: for each food source i do do Draw r = rand(0, 1)
15: if r < pi then
16: Send the current onlooker bee to the i-th food sources;
17: Find a new food source in its neighborhood using Equation 5;
18: Compare the fitness of the original food source and the new one and choose

those which presents the best fitness (greedy selection);
19: end if
20: end for
21: end for
22: -Scout Bees Phase
23: if any employed bee xi abandoned its food source then
24: Find a new food source randomly produced using scout bee and Equation 4;
25: Send the employed bee xi to the new food source;
26: end if
27: Memorize the best solution achieved so far
28: end while
29: Output the best solution achieved

4 Experiments and Results

4.1 Network Simulation Environment

We chose the network simulator NS-2, version 2.35 [9] to perform the simulations using
the AOVD proposals analyzed in this paper. NS-2 is a discrete event simulator devel-
oped to be used in network analysis. The platform is suitable to deal with TCP protocol,



routing, multicast protocols to wireless and wired network [13]. The NS-2 are widely
used by many researchers since it is an open source tool. This characteristic becomes
essential if the user needs to insert some change in the source code.

To analyze the performance of the proposals using the AODV protocols, we set a
network containing 50 mobile nodes distributed in an area with 1500m x 300m. The
transmission range was set to 250m, and the duration of each simulation was 900s and
pausing time of 30 seconds. The radio propagation model was the Two-Ray Ground,
and The physical (PHY) and medium access (MAC) layers follow the IEEE 802.11 at
a bit rate of 2 Mbits/s.

It is important to observe that the data and the routing packets sent by the network
layer are put in a row at the interface queue until the MAC layer can transmit them. Each
node has a queue for packets waiting for transmission by the network interface, which
holds up to 50 packets. The maximum speed (Vmax) is 20 m/s, and the traffic pattern is
CBR with the following parameters: 30 traffic sources, packet rate of 4 packets/s with
a packet size of 512 bytes. We used the User Datagram Protocol (UDP).

4.2 Performance Evaluation

To perform the PSO and ABC, we used 20 particles (or bees) to determine the values of
the weights A,B,C and D, which minimizes the Routing Overhead. The search space
is [-1, 1] and was defined after previous experiments. The number of iterations was set
as 200, resulting in 4000 calls to the simulator per algorithm. The simulation scenario
was executed 10 times and we executed 200 iterations in each case. A single execu-
tion takes 6 days to be completed. Additionally, previous validations were necessary to
ensure the accuracy of the code, and experiments lasted over a month to be completed.

To assess the performance of the algorithms, the following metrics were used:

– End-to-end Delay (Delay): It is the average time that a data packet takes to arrive at
the destination. This includes all additional delays caused by forwarding, queuing,
route discovery and route repair processes. It is calculated using Equation 7.

delay =

NR∑
i=1

ArriveT ime− SendT ime

N∑
i=1

NumberOfConnections

(7)

Where N is the number of nodes, NR is the number of received data packets,
SendT ime is the time when the packet was sent, ArriveT ime is the time in which
the packet was received and NumberOfConnections is the number of active
connections.

– Routing Overhead (RO): It is the sum of all routing and control packets used during
network communication.

– Normalized Routing Overhead (NRL): It is the ratio between the sum of all rout-
ing and control packets and the sum of all packets sent (data, control and routing
packets).

– Packet Delivery Ratio (PDR): It is the ratio of successfully received data packets
and the total of sent data packets.



Table 1. Performance Comparison considering the Mean Values and the Standard Deviation.

Algorithm Delay RO NRL PDR

AODV
1214.0560

(0.0)
224307.0

(0.0)
2.8446
(0.0)

73.6990
(0.0)

ABC
704.4434

(323.5753)
173484.2

(28494.15)
2.02275
(0.4912)

80.9588
(4.0348)

PSO
608.3896
(21.5576)

164566.3
(1921.564)

1.8686
(0.0214)

82.2246
(0.0319)

As can be seen in Table 1, we expected to minimize the routing overhead resulting
in the improvement in the rest of the metrics. This can be explained by the fact that
when a network is full of routing and control packets, data packets tend to get dropped
or take longer to get to the destination.

Both PSO and ABC presented better results than the traditional AODV. When com-
paring the two swarm approach, the Wilcoxon test was applied considering a signifi-
cance level of 0.05, and the result shows that there is no statistical difference between
the PSO and the ABC population. This might be due to the low complexity of the prob-
lem. In fact, during the experiments was observed the both algorithms converged with
around one hundred iterations.

In Table 2, we observe a variation in the coefficients. The experiments showed that
the same result could be obtained using different coefficients values. This is an indi-
cation that this is a multimodal problem and the algorithms were capable of finding
multiple solutions (different local optima).

Regarding the values found for the coefficients, as Table 2 illustrates for both al-
gorithms, the weights of the source equation (A and B) are greater if compared to
their correspondent on the local equation. In other words, the source repair coefficients
have more weight which makes us conclude that AODV obtains better results when the
source repair is performed more frequently than the local repair. This behavior was also
observed in [18]. The AODV-Source achieved better overhead results than the AODV-
Local in a similar scenario with 30 nodes with the velocity of 20 m/s and environment
size of 1500 by 300 meters. This may occur because when the local repair fails, the
predecessor node drops all cached packets which should be sent via the broken route.
Moreover, when the network topology changes constantly, one route can be broken into
several points, and when this occurs, one source repair is more efficient than several
local repair attempts.

5 Conclusions

The computational results show that using a swarm-based algorithm is possible to im-
prove the performance of the AODV routing protocol regarding routing overhead, end-
to-end delay, and packet delivery ratio. Both metaheuristics used in this work were able
to find a set of values to the coefficients which improve the performance of the standard



Table 2. Best Coefficient Values Found by ABC and PSO in Each Execution.

Algorithm A B C D

ABC

0.5086 -0.5995 0.1534 -0.7524
-0.3069 0.9975 -0.9942 1.0
0.7989 0.8289 -0.5289 -0.1556
-0.3069 0.9975 -0.9942 1.0
-0.5047 0.3388 -1.0 -0.5122
1.8562 0.7877 -0.9783 -0.5471
0.4656 0.2470 -0.9651 -0.6262
-0.5047 0.3388 -1.0 -0.5122
1.8562 0.7877 -0.9783 -0.5471
1.8562 0.7877 -0.9783 -0.5471

PSO

-0.1130 0.9664 -0.8479 0.0558
-0.5047 0.3388 -1.0 -0.5122
0.0335 -0.1985 -0.7352 -0.7070
-0.2187 0.3984 -0.6421 -0.4665
-0.1698 -0.5439 -0.5302 -0.8053
1.8562 0.7877 -0.9783 -0.5471
-0.5047 0.3388 -1.0 -0.5122
1.8562 0.7877 -0.9783 -0.5471
1.8562 0.7877 -0.9783 -0.5471
-0.1698 -0.5439 -0.5302 -0.8053

AODV. However, since PSO algorithm has lower computational cost than ABC and uses
only one fitness evaluation per iteration, while ABC uses two, we can conclude that the
PSO represents a more appropriated solution if the usage of computational resources is
taken into account.

As future work, we intend to compare the algorithms using different environment
sizes, the number of nodes, the velocity of the nodes and pausing times. We also plan to
include new metrics such as energy efficiency to achieve better solutions. We will apply
a multi-objective algorithm to obtain the best trade-off considering all the considered
metrics.

References

1. A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal
Communications 6(2), 46–55 (July 1999)

2. Dsr: the dynamic source routing protocol for multihop wireless ad hoc networks. Ad Hoc
Networking pp. 139–172 (2001)

3. On-demand multipath distance vector routing in ad hoc networks. In: in Proc. International
Conference on Network Procotols (ICNP) (2001)

4. Ad hoc on-demand distance vector routing. Request for Comments:3561 8(1) (July 2003)
5. The effects of local repair schemes in aodv - based ad hoc networks. IEICE Transactions on

Communications E87-B(9), 2456–2466 (July 2004)



6. Label switched multi-path forwarding in wireless ad-hoc networks. In: Proc. of IEEE Inter-
national Conference on Pervasive Computing and Communications Workshops (2005)

7. Local repair mechanisms for on-demand routing in mobile ad hoc networks. In: Proc. of
Pacific Rim International Symposium on Dependable Computing (2005)

8. Boussad, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Information
Sciences 237, 82–117 (2013)

9. Issariyakul, T., Hossain, E.: Introduction to Network Simulator NS2. Springer Publishing
Company, Incorporated, 1st edn. (2010)

10. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report, Erciyes University, Engineering Faculty, Computer Engineering Department TR06
(2005)

11. Karaboga, D., Basturkl, B.: A powerful and efficient algorithm for numerical function opti-
mization: Artificial bee colony (abc) algorithm. Journal of Global Optimization 39(3)

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International
Conference on Neural Network. vol. IV, p. 19421948 (1995)

13. Kubinidze, Ninoand Ganchev, I., O’Droma, M.: Network Simulator NS2: Shortcomings,
Potential Development and Enhancement Strategies

14. Van der Merwe, D., Engelbrecht, A.: Data clustering using particle swarm optimization. In:
Proceedings of IEEE Congress on Evolutionary Computation. pp. 215–220 (2003)

15. Murthy, C.S.R., Manoj, B.S.: Ad Hoc Wireless Networks: Architectures and Protocols. Pren-
tice Hall (2006)

16. Pereira, N.C.V.N., Bastos-Filho, C.J.A., de Moraes, R.M.: Improving aodv route recovery
mechanisms with connectivity and particle swarm optimization. Journal of Communications
and Information Systems 1(27), 15–21 (2012)

17. Pereira, N.C.V.N., de Moraes, R.M.: A comparative analysis of aodv route recovery mech-
anisms in wireless ad hoc networks. In: IEEE Latin-American Conference on Communica-
tions (LatinCom). pp. 1–6 (May 2009)

18. Pereira, N.C.V.N., de Moraes, R.M.: Comparative analysis of aodv route recovery mecha-
nisms in wireless ad hoc networks. IEEE Latin America Transactions 8(4), 385–393 (2010)

19. Perkins, C.E., Belding-Royer, E.M.: Ad hoc on-demand distance vector routing. In: Proc.
of the 2nd IEEE Workshop on Mobile Computing Systems and Applications. pp. 095–100
(1999)

20. Perkins, C.E., E. M. Belding-Royer, S.R.D., Marina, M.K.: Performance comparison of two
on-demand routing protocols for ad hoc networks wireless networks. IEEE Personal Com-
munication 8(1), 16–28 (2001)


